Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ecol Resour ; 23(2): 327-329, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36307962

RESUMEN

Tigers are endangered apex predators. They typify endangered species because they are elusive, rare, and face numerous threats across their range. Tigers also symbolize conservation. However, it is very difficult to study tigers because of their stated nature. Also, tiger conservation is a geopolitically sensitive topic, making it difficult to use the studies to propose evidence-based management that allows their recovery, especially in the context of conservation genetics. Zhang et al. (Mol. Ecol. Resour., 2022) have created very valuable and rare resources to aid the community in conserving tigers. First, they present chromosome level genome assemblies of a South China tiger and an Amur tiger. Second, they present whole genome sequences of 16 captive South China tigers. Additionally, by using the assemblies they model the demographic history of these populations, estimate inbreeding and the potential threats they face in captivity. This approach is particularly important because genetic management is now the only remaining option for South China tigers, because they are extinct in the wild. In other words, captive individuals are our only hope for some day restoring the wild populations of South China tigers.


Asunto(s)
Tigres , Humanos , Animales , Tigres/genética , Especies en Peligro de Extinción , Endogamia , Conservación de los Recursos Naturales
2.
Gigascience ; 122022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576130

RESUMEN

The tiger, a poster child for conservation, remains an endangered apex predator. Continued survival and recovery will require a comprehensive understanding of genetic diversity and the use of such information for population management. A high-quality tiger genome assembly will be an important tool for conservation genetics, especially for the Indian tiger, the most abundant subspecies in the wild. Here, we present high-quality near-chromosomal genome assemblies of a female and a male wild Indian tiger (Panthera tigris tigris). Our assemblies had a scaffold N50 of >140 Mb, with 19 scaffolds corresponding to the 19 numbered chromosomes, containing 95% of the genome. Our assemblies also enabled detection of longer stretches of runs of homozygosity compared to previous assemblies, which will help improve estimates of genomic inbreeding. Comprehensive genome annotation identified 26,068 protein-coding genes, including several gene families involved in key morphological features such as the teeth, claws, vision, olfaction, taste, and body stripes. We also identified 301 microRNAs, 365 small nucleolar RNAs, 632 transfer RNAs, and other noncoding RNA elements, several of which are predicted to regulate key biological pathways that likely contribute to the tiger's apex predatory traits. We identify signatures of positive selection in the tiger genome that are consistent with the Panthera lineage. Our high-quality genome will enable use of noninvasive samples for comprehensive assessment of genetic diversity, thus supporting effective conservation and management of wild tiger populations.


Asunto(s)
Conducta Predatoria , Tigres , Animales , Femenino , Masculino , Cromosomas , Genoma , Genómica , Tigres/genética
3.
Heredity (Edinb) ; 128(2): 88-96, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857925

RESUMEN

Identification of genetic structure within wildlife populations have implications in their conservation and management. Accurately inferring population genetic structure requires whole-genome data across the geographical range of the species, which can be resource-intensive. A cheaper strategy is to employ a subset of markers that can efficiently recapitulate the population genetic structure inferred by the whole genome data. Such ancestry informative markers (AIMs), have rarely been developed for endangered species such as tigers utilizing single nucleotide polymorphisms (SNPs). Here, we first identify the population structure of the Indian tiger using whole-genome sequences and then develop an AIMs panel with a minimum number of SNPs that can recapitulate this structure. We identified four population clusters of Indian tigers with North-East, North-West, and South Indian tigers forming three separate groups, and Terai and Central Indian tigers forming a single cluster. To evaluate the robustness of our AIMs, we applied it to a separate dataset of tigers from across India. Out of 92 SNPs present in our AIMs panel, 49 were present in the new dataset. These 49 SNPs were sufficient to recapitulate the population genetic structure obtained from the whole genome data. To the best of our knowledge, this is the first-ever SNP-based AIMs panel for big cats, which can be used as a cost-effective alternative to whole-genome sequencing for detecting the biogeographical origin of Indian tigers. Our study can be used as a guideline for developing an AIMs panel for the management of other endangered species where obtaining whole genome sequences are difficult.


Asunto(s)
Tigres , Animales , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Variación Genética , Genética de Población , Genoma , Tigres/genética
4.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34848534

RESUMEN

Increasing habitat fragmentation leads to wild populations becoming small, isolated, and threatened by inbreeding depression. However, small populations may be able to purge recessive deleterious alleles as they become expressed in homozygotes, thus reducing inbreeding depression and increasing population viability. We used whole-genome sequences from 57 tigers to estimate individual inbreeding and mutation load in a small-isolated and two large-connected populations in India. As expected, the small-isolated population had substantially higher average genomic inbreeding (FROH = 0.57) than the large-connected (FROH = 0.35 and FROH = 0.46) populations. The small-isolated population had the lowest loss-of-function mutation load, likely due to purging of highly deleterious recessive mutations. The large populations had lower missense mutation loads than the small-isolated population, but were not identical, possibly due to different demographic histories. While the number of the loss-of-function alleles in the small-isolated population was lower, these alleles were at higher frequencies and homozygosity than in the large populations. Together, our data and analyses provide evidence of 1) high mutation load, 2) purging, and 3) the highest predicted inbreeding depression, despite purging, in the small-isolated population. Frequency distributions of damaging and neutral alleles uncover genomic evidence that purifying selection has removed part of the mutation load across Indian tiger populations. These results provide genomic evidence for purifying selection in both small and large populations, but also suggest that the remaining deleterious alleles may have inbreeding-associated fitness costs. We suggest that genetic rescue from sources selected based on genome-wide differentiation could offset any possible impacts of inbreeding depression.


Asunto(s)
Variación Genética , Genómica , Endogamia , Tigres/genética , Distribución Animal , Animales , Conservación de los Recursos Naturales , Genoma , India
5.
Mol Biol Evol ; 38(6): 2366-2379, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33592092

RESUMEN

Species conservation can be improved by knowledge of evolutionary and genetic history. Tigers are among the most charismatic of endangered species and garner significant conservation attention. However, their evolutionary history and genomic variation remain poorly known, especially for Indian tigers. With 70% of the world's wild tigers living in India, such knowledge is critical. We re-sequenced 65 individual tiger genomes representing most extant subspecies with a specific focus on tigers from India. As suggested by earlier studies, we found strong genetic differentiation between the putative tiger subspecies. Despite high total genomic diversity in India, individual tigers host longer runs of homozygosity, potentially suggesting recent inbreeding or founding events, possibly due to small and fragmented protected areas. We suggest the impacts of ongoing connectivity loss on inbreeding and persistence of Indian tigers be closely monitored. Surprisingly, demographic models suggest recent divergence (within the last 20,000 years) between subspecies and strong population bottlenecks. Amur tiger genomes revealed the strongest signals of selection related to metabolic adaptation to cold, whereas Sumatran tigers show evidence of weak selection for genes involved in body size regulation. We recommend detailed investigation of local adaptation in Amur and Sumatran tigers prior to initiating genetic rescue.


Asunto(s)
Evolución Biológica , Flujo Genético , Endogamia , Selección Genética , Tigres/genética , Animales , Conservación de los Recursos Naturales , Variación Genética , Genoma , India , Filogeografía
6.
Ecol Evol ; 10(11): 4583-4594, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32551045

RESUMEN

Knowledge of relationships in wild populations is critical for better understanding mating systems and inbreeding scenarios to inform conservation strategies for endangered species. To delineate pedigrees in wild populations, study genetic connectivity, study genotype-phenotype associations, trace individuals, or track wildlife trade, many identified individuals need to be genotyped at thousands of loci, mostly from noninvasive samples. This requires us to (a) identify the most common noninvasive sample available from identified individuals, (b) assess the ability to acquire genome-wide data from such samples, and (c) evaluate the quality of such genome-wide data, and its ability to reconstruct relationships between animals within a population.We followed identified individuals from a wild endangered tiger population and found that shed hair samples were the most common compared to scat samples, opportunistically found carcasses, and opportunistic invasive samples. We extracted DNA from these samples, prepared whole genome sequencing libraries, and sequenced genomes from these.Whole genome sequencing methods resulted in between 25%-98% of the genome sequenced for five such samples. Exploratory population genetic analyses revealed that these data were free of holistic biases and could recover expected population structure and relatedness. Mitochondrial genomes recovered matrilineages in accordance with long-term monitoring data. Even with just five samples, we were able to uncover the matrilineage for three individuals with unknown ancestry.In summary, we demonstrated that noninvasive shed hair samples yield adequate quality and quantity of DNA in conjunction with sensitive library preparation methods, and provide reliable data from hundreds of thousands of SNPs across the genome. This makes shed hair an ideal noninvasive resource for studying individual-based genetics of elusive endangered species in the wild.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...